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A singular integral equation is examined. This equation is generated by some mixed 
problems of the plane theory of elasticity, in particular by problems dealing with the 
contact between two bodies when friction or complete cohesion are present in the con- 

tact region. General properties of the solution of this equation are investigated. The 
initial singular equation is reduced to Ffedholm’s integral equation of the second kind 

through application of regularization by means of the solution of the characteristic equa- 

tion [1]. For the condition where the kernel is small the resolvent is found for Fredhoim’s 
integral equation of the second kind. 

Problems of interaction between a stamp and an elastic isotropic strip are examined : 
displacement of the stamp in the presence of friction between the stamp and the strip, 

and the impression of the stamp into the strip in case of complete cohesion in the region 

of contact ( l ). Solutions of these problems are obtained in the form of power series of 
a dimensionless small parameter which characterizes the relative length of the contact 

region. Boundaries for uniform and absolute convergence of these series are established. 
Examples are presented. 

1, Let us examine the following singular integral equation: 
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cP(BlnPI”- gp%=++p, p), rq< 1 (3.1) 
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*) Analogous problems on interaction of a stamp with an elastic half-plane were exam- 
ined in a number of papers by other authors (see, for example, appropriate problems and 
their reviews in @I). 
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where 

Here q(s) is the desired function. bf(s) and k(Z, E, p) are given functions. Let us 

assume that the second derivative of the function k(z, &, p) with respect to variable 

z is bounded in the rectangle { -I< 5 < 1, --1 < E < I} for all values of para- 
meter p E IO, 00 ). It will also be assumed that In the general case the functions g(z), 
f(s), k(z, E, IL) , and the parameter 8 are complex ( l ). 

Some plane mixed problems of the theory of elasticity, for example contact problems 
of two bodies, are reduced to integral equation (1.1). In this connection the case 0 = 0 

corresponds to the absence of friction in the region of contact ; 0 = kA Indicates the 

presence of friction forces In the contact region, and 0 = iA corresponds to complete 
cohesion in the contact region. Here k is the friction coefficient, a = (1 - 2v)/2(1-v), 

and v is Poisson’s ratio. The case 6 (2, p) E 6f (t) corresponds to the problem of an 
absolutely rigid stamp being Impressed into an elastic half-plane under conditions of 

contact examined above. 

Differentiating both parts of Eq. (1.1) with respect to t, we arrive at a singular lnte- 
gral equation with constant coefficients. The equatlon has the form (47.5) of p$ The 

solution of this equation is given by expressions (47.12) and (47.13) of the same refe- 
rence. For this case the solution takes the form 

cp@) = &Y(g -f- 1)2X(x) %Y lJ)Y IsI< 1 (4.3) 
where 

(1.4) 

X(z) - (1 - z)++~ (1 + z)-‘/I-“, 0 = (2n$’ lg g 
(C is an arbitrary constant). 

(1.5) 

It ls convenient to introduce here the following integrals which wlII be needed later. 

These Integrals are readily computed by the method proposed by Muskhelishvlll p] 
(Sect.llO.Chapter VI, Note 1) z I 

s 

tn dt 2* 
-z- x (t) (t - 2) = e x (2) 

2 v-/g 
--- Pn+l@) g+l 

P, (z) = i 7&k zh’, 

-1 

P_,+ (2) 3 0 (” =o, 1. 2, . . .) (4 4 

k=O 

l ) Without loss of generality this treatment was limited to the case (1.2) in order to 
abbreviate the writing of equations. However, the regular integral term in the right side 

of Eq. (l-1) can contain real and Imaginary parts of function cp (z), 1. e. 

V(Z,If) =-6/ (z)-+ { [k (2, E, c’) cp ff) + kl(z, E, ~)Recp (E) -I- k, (2, E, P) Imcp (&)I dk 
-1 
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I ’ p1 

-ii s X (2) dt 2 ?g 
t-x =-@+1X(4+ g+lsJ2) 

-1 

n 

s, (2) = 2 6n_k2k, Is_“_, (2) GE 0 (n = 0, i, 2, - ..) (1.7) 
k-0 

. 

**==+$ (-l)“ic~~n~l(~-~+~~(~+~+~~ 
j-0 p==o q=o 

In the case where the upper limit of the product is equal (-l), the product is taken 

equal (+l). 
UtIUzing Eq. (1.6) for n = 0, we can write expression (1.4) in the form 

$+&, i4) = C + 2 V/g (8 + I)-’ I%(z) 8 (? P) - J (I, p) (i-8) 

A theorem is given below which estabIishes some general properties of the solution of 

the integral equation (1.1) as a function of nroperdes of the right side. 

Theorem 1.1. If function 6(s, i,~) E H,X (-i,i) for any fixed value of para- 
meter p E [O, oa), then the function $+J, p) E W-1) (-i,i) for ail ~10, 00 I( l ) . 

In Eqs. (1.8) and (1.9) let us fix the arbitrary values of parameter in and it will be 
omitted in the proof of the theorem. 

It is apparent that the statement will be proven if it is shown that I (r)~ C”-’ (-1, i). 
Differentiating the Integral (1.9) with respect to z (n - I) times and utilizing Eq. 

(7.4) of 131, we obtain 
t JWV @.) = f 

s 
N (Et 2) de 

x (f) I E - = I” 
-1 

(1.10) 

where the function N (&, t) satisfies Holder’s condition with respect to both variables, 
while u is an arbitrary value contained in the interval 1 - h < o < 1. 

Taking into account that the function under the integral X-t (E) N (&, z) Is bounded 
with respect to both variables, the uniform convergence of integral (1.10) is not difficult 

to establish. Consequently, J w’J (r) E C (--ill). which proves the theorem. 

Let us now turn to integral equation (1.1). 
Let f(s) E: H,” (-l,I). By virtue of assumptions made earlier with respect to func- 

tion k(z, E, i.L) we obtain on the basis of Theorem 1 that the function $(Z, II) fl-1 c 

(-1, 11 and the operator 

l ) Here H,,’ (-t,i) designates a class of functions,the nth derivative of which satisfies 
the Holder condition on the segment z E [-I,11 with the index A. 6”’ (-i,i) is a 
class of functions which on the same segment have a continuous n th derivatfve. 
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in expression (1.4) operates in c (-1. 1). In this camection the singular equation (1.1) 
is reduced to Fredholm’s integral equation of the second kind (1.4) with respect to a 
new unknown function ip(t, c(). On the basis of Theorem 5 (Section 5, Chapter IV) of 
[43 we obtain that in the case When ]I L 11 < i, the solution of Eq. (1.4) assumes the 

form (0) 

cp =i Lk& *o (W = c + 660 (5) (1.12) 
k=o 

and series (1.12) converges uniformly and absolutely for all values of parameter cl, which 
satisfy the following inequality 

M<‘li +W{ max I& (2, E, P) I + (2, E E [- I,II) + (1.13) 

+1/~1~-2~(m~Ik,“(~,~,~)~}<~ 

Let us examine some problems on interaction of a stamp with an isotropic strip of the 
width h for the case where planar deformation occurs (transition to the case of plane 

state of stress is accomplished according to known equations). 
Let 20 be the length of the contact region. Dimensionless coordinates (I’, v’) are 

introduced according to equations + - az’, y = hv’ such that the strip occupies the region 
I- 00 < x’ < 009 --i ( y’ ( 0) and the origin of the coordinate system coincides with 

the center of the contact region: -_i <z’ ( i (Z$ = 2a / )I is the relative length of th 

contact region). The problem will be examined below in dimensionless coordinates 

(d, v’) with omission of primes. 

2. let us examine the problem of equilibrium of the stamp on the boundary of the 

strip in the presence of friction in the contact region. Let us assume that under the stamp 
r (z) = -kq (z), where q (2) and I (t) denote distribution functions of normal and tan- 
gential stresses, respectively, developed under the stamp (k is the friction coefficient, 
assumed to be constant). let us assume further that additional loading is absent outside 
the stamp and that the opposite boundary of the strip rests on a nondeformable base with 

the following conditions: (a) absence of friction between the base and strip; (b) com- 

plete cohesion of boundary points. 

Through methods of operational calculus using the Fourier transform, problems (a) and 
(b) are reduced to the determination of the unknown distribution function of normal 

stresses q (2) in the contact region from the following integral equation: 
1 

s q (0 K [I, (z - f)] dc = - 5l @)t I x I 6 i (2.1) 
-1 

where 00 

K (pt) = f 
s 

du 
[LI (u) cos Nu + kAk (u) sin pru] y (2.2) 

0 

(a) LI (14 = 
shSu chushu-(I-2v)-ru 

chuehu+u’ L (u) = chushu+u 

(b) 
, xchushu-u 

Lr (a) lx chl u + u~ + (1 - 2v)s * G 04 = 
x sh’ u - (i - 2v)-1 u’ 

x ch’ u + lb* + (1 - 2v)s (2-3) 

A - (i-2v) / 2(1 -v), x= 3--bv, 6= B/2 (i -93) 

l ) The operator Lk denotes successive application of operator L (1.11). For example, 
L (L $0) = L+40. 
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Here f (z) is the settling function of boundary points of the strip under the stamp, E 

is Young’s modulus, and v is Poisson’s ratio. 

Let us separate the characteristic part from kernel K (1) of the integral equation(2.1). 
We obtain K (rt) -22-1kAsgnt--nl[ln~ItI-k(~t)j (t-z-&) (2.4) 

The function 00 

k (e) = 
s 

i[h (u) - ilcos~u+~-U+kAII,(u)--l]sinau)~ (2.5) 
0 

is continuous together with all its derivatives with respect to u on the segment o E 

E [--_2tc, 2~~1 for any fixed value of parameter p E IO, 00). 
Substituting expression (2.4) into Eq. (2.1). we arrive at an integral equation of the 

form (1.1). where 9 P kA and A (z, g, p) - k[p (Z - E)]. Regularization of the latter 
by means of the solution of the characteristic equation leads to Fredholm’s equation 

(1.4). It follows from (1.3)-(1.5) that the solution of Eq. (2.1) can be represented in 

the form q (z) - 11 + (kA)T’ X (49 (2, P), lo (~3 IL) = ‘4’0 (2) +‘#,’ (2, P) 

x (2) = (1 - zp+a (1 + 2) I’*-=, a = n* arctg kA (2.6) 

where qo (2) is the solution of the corresponding problem for the half-plane. The term 

q (2, P) is due to the presence of boundary of the strip on the opposite side from the 
stamp. It follows also from (1.4) that the smaller the parameter p (the wider the strip), 

the smaller the contribution of this term. From properties of function (2.5) on the basis 
of Theorem 1.1 we find that @ (5, p) E C P-9 (-I, 1) for all p E [O, 0~). Equation(l.12) 
gives asymptotic representations of function 9 (5, p) for small values of parameter u. 
In this connection we find from (1.13) that the series (1.12) converges uniformly and 
absolutely for 

p <pop po = 

- max 1 k’ (6) 1 + R (3; a) 

(1 - 2%) max 1 k” (6) 1 (--<<a++) (2.7) 

R (u; a) = [(max I k’ (u) 1)” + 2(i--2a) (1 + 2a)-l max [k” (a) I]‘/” 

For calculation of quadratures in expression (1.12) the function k (e) is expanded in 
Maclaurin series. We obtain M 

k (3) := 2 as?’ = 2 as~~sys (-2,(y=z-_<2) (2.8) 
s=o s-0 

03 

ao= s [LI(u)-1 +eeU]du, a!%-1 

0 

= kA (!:;y;); f [&. (u) - I] u2m-2 du 

0 

a2rn 

(-1l)m m 
ZP 

(Zm) I s 
[Ll(U)--l]u 

am-l& 
(m= 1, a,...) 

0 
(2.9) 

The series (2.8) converges uniformly and absolutely for all P < 1. 
Now substituting (2.8) into expression (1.12). computing quadratures from Eqs. (1.6) 

and (1.7). and collecting coefficients for identical powers of parameter l.t, we obtain 
that the solution of integral equation (2.1) for small values of parameter p has the 
form (2.6). where 

9 (5, P) = i l&j P), $0 @) = C + 660 (d (2.10) 

j=o 

$j (z) = i sag $ (-- 1)’ C:1:r,_,, j_sPs_t+l (r) (i > 1) (2.11) 
s=1 t=1 
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Coefficients Y n,f are determined from recursion relation 

Tr, j = 5 sag i (- I)’ ciIiT&l, j-8 ‘r,, s-I+1 * dr, s = ii Ts-#r+p 

S=l I=1 P=o 

(2.12) 

Here the series (2.10) will converge uniformly and absolutely for all p < ~1 = 

= inf {i, pa}. 

The consrant C is determined from the given force Q which impresses the stamp using 
the following equation : 

Q = S Q (2) dz = v 1 qckAp 5 ILjro, j (2.13) 

-1 3==0 

In the case where f (5) z --A, zn (n = O,i,2,...) we will have for yn,o in equations 

(2.11) 

~~~~ = C6, + BnA,, ‘t/l + @A)’ 5 m,,ep %+p 
P==O (2.14) 

q0 (4 = C + 6nA, vi + (Wa J’, (4 

For k = 0 (then cc = 0) we obtain the solution for the ideal case where the friction 
is absent [5]. 

3. Let us examine the problem of impressing the stamp into an elastic strip in the 
case of complete cohesion of boundary points of the strip in the region of contact with 

the base of the stamp. It is also assumed that there is no additional loading outside the 

stamp and that the opposite boundary of the strip is in condition (a) or (b) of Sect.2. 
In the same manner as above, these problems are reduced by methods of operational 

calculus to the determination of normal q(z) and tangential ‘C(Z) stresses, which develop 
under the stamp, from the singular integral equation 

1 

s cp(E)~[~(~-W%t~~ \ Im(P(~)kl[CL(J:-_)ldE=--8f(2) (3.1) 
-1 -1 

cp(4 = q(z) + ir(4, lsl< 1 

k, (6) = r LI, (u) cos audu 

(a) I,,(U) 1 - (chushu + u)-’ 

(b) L,(u) = 2 [xchBu + u? + (1 - 2v)7+ 

(3.2) 

Here the function K(j-& t) (i! =E x - g) has the form of (2.2) and (2.3); in this case 
in Eq. (2.8) the constant /c = i the imaginary unit; the remaining notations have the 

same meaning as in the previous case. 
Separation of the characteristic part in the integral equation (3.1) leads us to an equa- 

tion of the form (1.1) in which 0 = i A and 
e (2, P) = -W(x)- 

1 -- 
51 {i cp(E)k[+--W%+i \ Imcp(E)k&(+EWE) 

-1 -1 

(3.3) 
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Here k(u) [U = p(z - E)] in the first integral coincides with (2.5)) where it is 
appropriate to write k = f. 

After regularization or this equation we find that its solution has the form 

cp (4 = (4x)-’ (x + 1)’ x (2) 9 (59 P) (3.4) 

x (z) = (1 - g.y/a+~~ (1 + 5)-‘/‘-1~ ( p = (2J$‘In x 

In analogy to previous development it is possible to show that the function %(s, 

= Q#oPO(Z) i- 9% p), where So(z) is h 

p) = 

t e solution of the corresponding problem for the 
half-plane, and \P’(z, ik) E coo (- 1,1) , for any fixed p E [O, OZ.) and when 

p -+ 0, approaches zero uniformly with respect to x . For small values of parameter i.~ 

the function \p(+, p) has the form (1.12). where 

whereby we find from (1.13) that the series (1.12) converges uniformly and absolutely 

for 
P<ib* cb= 

- max IO (4 I + Q (4 
CFFma=l o'(a)1 

Q(u) = [(max 1 o(u) 1 )” i- 2max I o’(u) I 1 v2. (3.6) 

&) = k’(u) + k;(u) 
In the operator L let us now expand the functions k(u) and k,(a) into Maclaurin 

series. In the expression for $(S, p) we collect coefficients for the same powers of 

parameter /&. We obtain that $(z, p) has the form (2.10). The coefficients \p#z) are 

determined from relationships 
*o(x) = c i- 660(X) 

8-i r=l 

#=41-l 
8 

&,s= 2 r&f* ( 
v-0 

Grn = ml(nn'-m)l ) 

Here the initially given yr,o (r = 0, 1, 2,...) coincide with (2.11). Coefficients 
4, are given by relationships (2.9) where the constant k should be replaced by the imag- 
inary unit i, and the constants b, have the form 

b, = lLz!.,J [ Ls (14) uamdu (8 = 2m) 
G (3.8) 
(m= 0.1.2, . ..) 

In this case the series (2.10) converges uniformly and absolutely for all i.J < IL1 = 
= iId{ po, 1) ; here psis found from Eq. (3.6). The constant c is determined by giving 
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the stresses which impress the stamp into the strip, using one of the following conditions 

Here Q is the force of impression, T is the displacement force, M is the moment 

acting on the stamp. 
In the case where f(z) E - A,# (n = 0, 1, 2 ,... ), 

qo (5) = c + 2h4, v/x (x + I)” P, (5) (3.10) 

c.0 = car + 266 f/x(x + I)-$ %dh+k (r= 0, i,2,...) 
k=O 

Let the stamp with a rectilinear base, located on the boundary of the elastic strip, 
have only vertical displacement under the action of the force Q . In this case f(z) f 
E COnst (n = 0) , Limiting ourselves in Eqs. (3.7) and (3.10) to terms of the order of 

p2, we have 
cp(s)=(2n~)-'QX(z)[l+~"(28--r'z)+ 

Here co 

(11”=- @=A[ [L,(u)--l]du 
6 

Separating the real and imaginary parts, we find the distribution 

and tangential forces under the stamp 

0 (Pa)1 (3.11) 

(3.12) 

tictions of normal 

+~al”[28cosh(s)+~si~~(~)l+O(~2)) (3.13) 

T(X) = Q - z+i {sink.(z)+ ~a~~2~sinX(z)-~cos~]+O(~a)} 
2n )/l--9 v; 

k(z) = p In [(I j- 5) (1 - x)-l] (3.14) 

For p + O,Eqs. (3.13) agree with Eqs. (7) and (6). Sect. 114a in @] (if in the latter 
one takes into account a factor of % which was omitted). 

It follows from the above equations that when approaching the boundaries of contact 
z = f 1, the functions q(z) and T(Z) change sign. In this connection the distribution 

of points of changing sign depends on Poisson’s ratio v and the relative width of the 
contact region l,t. Similar behavior was also noted for corresponding axisymmetric prob- 

lems [S]. 
Finally, let us examine the case of an inclined stamp with a rectilinear base. The 

stamp penetrates in such a manner that the principal vector of external forces acting on 

the stamp is equal to zero. The base of stamp forms an angle e with the axis OX count- 
ing from OX in the negative direction. In this case f(z) = - m, Q + iT = 0 

and limiting ourselves to terms of the order of r(’ we find from (3.9). (3.10) and (3.4) 

q,(z) = 2nGer’h Ii + p%z2(1 + 4p2) + O(p*)lX(z) PI(z) (3.15) 

M E --2nGe(i + x)-‘(1 + 4p2)Ii + p2u2(4 + 4f12) + O(P’)] (3.16) 
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After separation of imaginary and real parts in expression (3.15) we obtain the formu- 
las for distribution of normal and tangential forces under the stamp 

q(x) = 2 Gex-‘h 11 + @z2(1 + 4fF) + 0($)1(1 - x’)--“~ [X CM h(X) - 
- 28 sin A(x)1 (3.17) 

T(X) = 2 G 8% +[I + p&(1 + 4p) + O($)l (I - x~)-~~ [x sin h (x) -I- 
+>.2fJ cos h (x)1 

Equation (3.16) gives the relationship between moment Matting on the stamp and 
the angle of rotation a. 

Let us bring out the following fact which can be easily seen from relationships (3.7) 

and (3.9): if for any shape of the base a load acts on the stamp for which the principal 
force vector is equal to zero, we obtain from indicated relationships that vo,j = 0 and 

I/&(X) s 0. This means that the refinement of the solution for the corresponding prob- 
lem in a half-plane has the order of p2. 

We note that approximate solutions of.integral equations (2.1) and (3.1) for large 
values of parameter p can be obtained using results in p]. In this connection, taking 

into account the behavior of the solution at the ends of the segment x ~3 [- I,1 J, the 

function under the integral U-r~ cU) = U-1 [L,(U) + CoLz(U)l 

(c = - ik in the case (2.1) and c = 1 in the case (3.1) ) 
in the kernel of these equations should be approximated by the following expression 

(A + Bu)“=“’ (C + Du)~‘~+~ Q (u) P-l(u) (3.18) 

in which the coefficients A, B and c, D and the entire functions Q(u) and P(u) 
are selected on the basis of best approximation. Such a construction ensures elementary 

factorization of the above indicated function and also the necessary singularities of the 

solution at the ends x = & 1. The author proposes to present this solution and also a 
numerical analysis of the combination of both solutions for large and small values of the 

parameter p. in the next paper. 

The author thanks V..M. Aleksandrov and V. A. Babeshko for valuable suggestions and 

help. 
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